If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-125=0
a = 4; b = 16; c = -125;
Δ = b2-4ac
Δ = 162-4·4·(-125)
Δ = 2256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2256}=\sqrt{16*141}=\sqrt{16}*\sqrt{141}=4\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{141}}{2*4}=\frac{-16-4\sqrt{141}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{141}}{2*4}=\frac{-16+4\sqrt{141}}{8} $
| x+8=x-11 | | 4(x+2)-10=3(2x-1) | | 5(t+1)/2=8 | | 5(t+10)/2=8 | | 2(s-6)/7=4 | | 1/2y-31/30=2/5y-1 | | 6+1-2x+5x=x-1 | | -(6/7)x+6=0 | | -(6/7x)+6=0 | | 3x+14=2(x+14) | | 2f+3=2-3(f=3) | | 3/4y+5=20 | | 3x+14=2x+14 | | 9t7/3t+5=3t-4/t+6 | | |7-x|=5x+1 | | 12/v=8/5 | | 8(6x-5)=2 | | 9x-2(x-5)=5(x+6) | | 6x^2-10x+171=0 | | 2x-4+x-4=46 | | y=2+1/6 | | 2(3.5)+6y=20 | | 21x^2+16x-22=0 | | 0.06-0.01(x+3)=-0.04(3-x) | | 23x+46=7(3x+6)+2x+4 | | -4(3t-2)+5t=6t-9 | | -5(7x-2)+5=-35x+15 | | 5x+4=-5+2x+21 | | 1x+1=-1x+1 | | 5x+13=2x+34 | | 45+2x=7x+10 | | 45+2x=7x+1 |